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SUMMARY

The potential of the linearized flow for & 1lifting-line propeller
of arbitrary clrculation distribution at subsonic advance is derived in
cylindrical harmonics. From the potential the induced angle at the
lifting line is obtained. The series expression for the induced angle
is divergent as is to be expected for lifting lines in supersonic flow,
but this divergence 1s removed when the supersonic 1lifting-line induc-
tion i1s removed. A phenomenon resembling resonance in vibrating systems
introduces itself in that one term in the series becomes very large com-
pared to the others. The main consequence of this phenomenon is that
the 1ift distribution cannot be arbitrarily prescribed; on the other
hand, the inverse problem, in which the propeller geometry is glven,
is acceptable.

INTRODUCTION

In order to calculate the induced angle of attack of the propeller
blade sections for compressible flow, the veloclty potential for the
complete flow field must be dérived. Inasmuch as the equation of motion
changes from an elliptic type to a hyperbolic type at the radius where
the propeller blade, or the blade prolonged, is at Mach number one, the
disturbance potential turns out to be of mixed elliptic and hyperbolic
character. With incompressible flow, the distant boundary condition
is certalnly that the disturbance potential must be zero far out radially
and far upstream. However, with compressible flow, the possibility of
propagation of disturbances far shead, especially in a closed wind tun-
nel, mst be admitted. Therefore, the one problem becomes two; the
elliptic field, which 1s essentially incompressible, and the hyperbolic
are determined by different physical conditions.

The velocity potential is obtained by superposing sulteble solutions
of the compressible equation of motion on the known far-wake velocity
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potential, which is also a solution of the compressible equation of
motion. This far-wake potential extends only downstream of the pro-
peller and provides the jump in potential at the tralling vortex sur-~
faces and the downstream feature that the far wake must be the same as
for incompressible flow except for random wave motion or noise. There-
fore, the problem reduces to superposing the elliptic and hyperbolic
fields in such a manner that certain physical conditions are met at
the propeller plane where the far-wake potential is cut off, an obvious
condition being continuity of the velocity vector. The cut-off of the
far-wake potential at the propeller plane creates the lifting lines
there, since this termination of the surfaces of a potentlial discon-
tinuity is equivalent to a lifting line.

In the differentiation of the potential at the 1ifting line, a
difficulty is to be anticipated in that a 1lifting line has infinite
wave drag in supersonic flow, and this condition is part of the theory
inasmuch as no restrictions are placed on tip Mach number. Some of
the hyperbolic induction attributed to the lifting line must therefore
be separated. This unwelcome induction is found In the hyperbolic
field but is absent in the elliptic field, as would be expected.

For the most part, only the case of propeller operation in a closed
clrcular wind tunnel is considered, although the way the potential may
be obtained in free air is indicated. The only reason for emphasizing
the tunnel is that, where series occur in the tunnel theory, integrals
occur for free air. The series seem more smensble to investigation
then the integrals, and it is belleved that free alr is the limiting
case in which the tunnel diameter approaches infinity.

SYMBOLS
B number of blades
M advance Mach number, V/a
v advance velocity
R.P. real part
a velocity of sound
1=y
t time

Uy axlal disturbance velocity, positive downstream



NACA TN 2983 3
ug tangential disturbance velocity, positive in direction of
propeller rotation

Ug ,Up,Ug, disturbance velocities in positive directions of coordi-
. nates z, r, and a, respectively

YyBj argument of jth extreme value of Bessel function of order nB
X,p,q dimensionless cylindrical coordinates (eq. (&))

Z,r,a cylindrical coordinates

P(p) circulation at p

1) disturbance velocity potential

O,V complementary parts of velocity potential ¢

i induced angle of attack at blade

B =L~

t helical angular coordinate (eq. (7))

PP, Pg particular values of p° for propeller tip, tunnel wall,
and sonic radius, respectively

) angular veloclty, radians per unit time
Subscripts:

i incompressible

c compressible

Partial differentiation is indicated by subscripts.
VELOCITY POTENTIAL, FOR FLOW IN A CLOSED CIRCULAR WIND TUNNEL

For a linearized theory the disturbance velocity potential ¢
must satisfy the equation

1 = 1 2
a2 Pot = Frprp * rp Prp rp? Porap * Papzo (1)
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in which 2zo,rp,an are cylindrical coordinates fixed in the distant

fluid, t 1s the time, and & the veloclty of sound. In coordinates
which rotate and advance with the propeller, the flow is steady after
the propeller has been in operation for a sufficiently long time under
constant conditions. Let zy,ry,ay be the coordinates in the moving

system with 2z; along the propeller axis of rotation and with positive
directions downstream, outward from the axis, and counter to the pro-
peller rotation, respectively (see fig. 1). If V 1is the veloclty of
advance of the propeller and o the angular veloclity, substitution of
the transformations

Zl=2.2+vt CI.l=CL2+(Dt rl=r2 (2)
into equation (1) leads to the steady-flow equation

L2 1y L ] ﬁ) ] oV .
¢21Z1(l a2> F e tEy Oyt r,2 ¢“1°‘1(l a2 G -R

. (3)

This equation has a more compact form in a third coordinate system x,p,a
differing from the 2z;,ry,a; system only in the length scale; that is,

Wzl

wr
x = —= p=—E @ =a ()
v v

In this new coordinste system equation (3) becomes

¢m(l-M2)+¢pp+%¢p+pie-¢m(l-p2M2)—2¢mM2=o (5)

In the helical coordinates of Goldstein and Reissner (refs. 1 and 2,
respectively) equation (5) becomes

¢XXB2 + ¢pp + % ¢p + ¢§g(l + 9-2) - 2¢§X =0 (6)
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through the transformation
{=a-x (7)

In the far wake, the oblique system used in equation (6) has advantages
because of the hellcal nature of the flow. However, except for far-wake
considerations, equation (5) is preferred because of i1ts orthogonal
coordinate system. In equation %6) if M=1, then B =0 and the
equation suffers the degeneration typical of the linearized equations

of flow in that the coefficient of the @xx term is no longer repre-
sented by B with sufficient accuracy. Therefore the advance Mach
number must not be too close to one.

Equations (5) and (6) may be shown to change from en elliptic type
to & hyperbollc type on a cylinder concentric with the propeller axis
of rotation with a radius such that the corresponding p 1s

ps = [ — (8)

where B = V1 - M2. As one would expect, equation (8) defines the
cylinder on which the resultant veloclty of the undisturbed stresm in
the moving coordinates is equal to the speed of sound. Because of the
change in type of the equation of motion, mixed elliptic and hyperbolic
components will generally occur in the complete solution.

The potential given by Relssner 1n reference 2 for the fer wake
is already in a usable form for compressible flow because it satisfies
equation (5) or (6). This potential is for a propeller of arbitrary
clrculation distribution. Adapted to the case where a circular wind

tunnel is present, Relssner's potential ¢w for the far wake takes
the form

w n
o=l 0 25 B2 n(odetn u (9)
n=
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where

o) = () [ 150 L g ¢ KOO ooy ar
n(p (p A (g).s,dg E+ T o) fopl(g)gdgdg

Pa
1<p)f O (o <py) (108)
o)

-K(p)I'(pp) + I(p)K'(pgp) [Pa
I'(oq)

hn(p) =

I'(gde %Pg—d& (pg < 0 < o)

(10b)

In these equations p, and pp are the values of p for the

propeller tip and the tunnel radius, respectively, B 1s the number of
blades, =T(p) the circulation distribution depending only on p,
and K(p) and I(p) are abbreviations for K,g(nBp) and I p(nBp),

respectively, which are Bessel functions of imaginary argument. The
primes on K'(p) and I'(p) denote differentiation with respect to p,
not with respect to the argument nBp. The angle { 1s zero halfway

between vortex sheets from adjacent blades and is limited to - % <t<k

B
with the vortex sheets at + %, =* %g’

It is immediately apparent that the Reissner potential, independent
of X, is a solution of equation (6) and hence of equation (5), because
for a potential independent of x, equation (5) is Laplace's equation
in the p,{ system. Therefore, the Reissner potential equation (9) is
considered as the first component of the velocity potential for the pro-
peller with compressible fiow, but its region of application is only in
back of, or downstream of, the propeller plane. Thus, the jump in
at the helical surfaces trailing from the blades is provided. Therefore,
the flow divides naturally into two regions, one in front and the other
in back of the propeller plane, both inside the tunnel wall. The rest
of the problem conslsts 1n adding suitaeble solutions of equation (5) in
front and 1n back of the propeller in order to take account of the
physical conditions.
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The appropriate solutions of eguation (5) are

EznnB(—lg- ]E,x
b= Jp 0%3212 + (nB)2<E]é— - 1> RN B (11)

ag may be verified by direct substitution. The constants n and 1 are
free. The tunnel-wall boundary condition requires that

pTngnje + (nB)E(B% - 1) = ¥pBj (12)

where ypp; 1s the argument of the Bessel function in equation (11) at
the jth exireme value. From equations (8) and (12)

y|j 2 ( )2
nB nB
=1 pT> - o2 (13)

where the plus sign is chosen to define lnj-

Equation (11) now becomes

- -~
8 ™ nB
Tl .41
InBj ( nj psa)x
JDB p— P e
T
>
by = Z >ein]3a.< (lh)
B , 1[#(-12m0)+281x
nBk Pg
JnB —p—- P e
T . ~
— -

The notation Hp refers to p in front or back of the propeller plane,
B

the F going with the upper sign in the braces, and the B with the
lower. The meaning of the two functions, one above the other, in braces
is that the upper function is used when lpy 1is real, the lower, when
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imaginary. It is convenient to use Ipx to indicate the imaginary
values. The upper function is called, for convenience, the elliptic
solution because it dies out exponentially with x, and the lower is
called the hyperbolic because it oscillates without dying out. This
complication, two possibilities for function character, must be accepted
because of the mixed flow.

' Two more physical conditions, altogether different, have been
imposed in the choice of + instead of F in equation (1) for the two
functions p 1Iin the braces. The origin of x haes been set at the
propeller plane with x positive downstream; for the elliptic functions
the choice of signs is obviously that which makes the solution vanish at
x = 3w, The cholice in the hyperbolic case is such that, since -ilp
is positive, the solutions osclllate for given velues of n and k
with higher frequencies in front than in back of the propeller, in
accordance with the physical observation in reference 3 that waves are
crossed with higher frequency in front than in back, proceeding in the
axiel direction.

The rest of the problem is to make superpositions of equation (14)
on the Reissner potential, which occuples only the region in back of
the propeller, in such a way that the flow is continmuous in the propeller
plane off the 1lifting lines.

Because of the discontinuous nature of the first term in equa-
tion (9), the compressible fields which must be superposed on the two
terms composing equation (9) must be determined separately. For this
purpose, let

fg =Ug + Pg + Vg + Vo + P (0 < x) (15)

B = ¥p + Yop + Pp (x <0) (16)

in which {» 1s the first, or discontinuous, function in Reissner's

potential (eq. (9)), ¥ 1s the second, or continuous one, Yy and @p
B

are the solutions of the form of equation (14), and Vop B&re degenerate
’ B

gsolutions of the form of equation (14) with n = 0. Now the origin for
the coordinate o must be decided; this is taken to be halfwey between
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blades. The angles o and { are now the same at x = 0, with the
nearest blades (1lifting lines) at o = =% %y x = 0. The angles

t =% 5 in the x,p,{ system are at the nearest trailing vortex sheets
on each slde of { = 0.

The compressible potentials wB and WF which accompany the dis-
continuous Reissner function 4y are now determined to provide con-
tinuity at the propeller plane. From equation (9)

Vg = %ﬁ(—pl(a - x) (172)

where the second form is obtained from an expansion of « - x in a
Fourier sine series and another expansion of P(p) in the form

© IIIB‘
r(p) = ng FannBCr-—p—T—J- D> (18)

in which Tnj is real. This Fourier-Bessel type of expansion is used

repeatedly herein. In particular, the arguments of the Bessel functions
are always adjusted through the frequency coefficient yﬁBj/pT to make

the extremes fsll at the tunnel wall pp; in which case Pnj is given
by (see ref. 4, p. 174)

pr pI'(p)Jn]3<Zg-:i-'i ;)dp (19)

2
AN -X
o' - () Bt

Tpy =
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The function VR, which is limited to the region downstream of the
propeller, causes a discontinuity in the axial velocity and in the
potential at the propeller plane x = 0. In order to avoid differentia-
tion of equation (17b), the discontinuity in axial veloecity brought by
YR can be obtained from equation (17a) directly and eliminated with a

degenerate term from equation (14) obtained by setting n = 0; the
result is
1
Y03 >
o v\ gpr (20)
B S 03 <Bp'1‘
= NJ pje
a’f;%'jo(% >

in which AOJ is to be determined. Nc discontinulty of potential is

introduced by ygp, and the discontinuity in axial velocity is canceled
B

[;; 2x *) x=0 * Ox _Jjx=0 ox _|x=0 ()

From equations (17a) and (20), equation (21) becomes

Br(p) , B yéj _;l _B yOJ
-t P L )2“ 7 o O( ) =

By using equation (18), the coefficients AOj become

by

Boj = -2 ED—T—POJ (23)

ij

The discontinuity in axial velocity brought by the Reissner term R
is therefore canceled by superposing the potentials
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Y5 BP
Toj R Jo(-o—J p>e ’ (24)
Y03

o] Ko

SBST
P

Only the discontinuity in potential at x = 0 caused by
remains. This discontinuity 1s canceled by requiring that

[eleo * Melo = [l (25)

and, in order to prevent introduction of a discontinuity in axial
velocity at x = O, by requiring that

2 R
1 v (26)
[éx 5 x=0 ox F x=0

in which {p comes from equation (17b), and Yp is written in the form,

B
adopted -from equation (14),
(
- =~ nB
_ - y];Bj iln'j+i-p-s—-2—>x
11=;1@_> g e ) F
) n B
§p = BP B S -2(-1) 4 einBa< Lfety B F
2n — — nB ' ¥ an x
B n=l 3=Jg YnBk Ps%
k=1 Anp | [PToBl—— e _J
B) br /) L
(27)

in which Anj and A, may be complex; that is,
Apj = apy + lap;

Ay = ey + lapy
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The range k=1, 2, 3, . . . ky denotes the hyperbolic terms, and
J = jo, 30+1’ jO+2, . . . o denotes the elliptic. Here, ko denotes
the last hyperbolic term in the summation and JO = k0+l' Substituting

equations (17b) and (27) into equation (25) gives

Ppy(-1) ensB + ienjp &n jF
+ ’ = (28)
Pnx(-1) enig + lenkp Enie

+
[N
B,
C
=

+
P
z

and, similarly, substituting equation (27) into equation (26) gives

~ - ( —
nB 1 nB 1
-lpj +1 og? anjB + len3p lny +1 gs‘z apgr + lapgp
< > = 4 > (29)
111 + BB + 1a’ “1lnk + =5 a + ia'
< nk 932 8nkB 8nkB i( nk > nkF nkF

Equations (28) and (29) each break into two equations corresponding
to the real and imaginary parts which yield the following solutions for
the elliptic field:

anjF=anJB=—%'££Pnj
lnjPs
~ (30)
a' =_a_l =..;I‘
njF njB 2 'nj
.)
and for the hyperbolic field
8nkF T 8pkB <
fnir = 3 Tok(-1 + ——— \ (51)
"ilnkpS
afp = § Tl + —B
—ilnkps




The coefficients given by equations (30) and (31) are now to be used in equation (27). Then
according to equations €l5] and (16), the ¥ part of the potentiml given by collecting equa-
tions (17e), (24+), and (27) is, for the region in back,

ij <
, _ 204
Br'(p) B 1 PE':E J 5.:9_51 PP +
Yot Yot ¥ T T (“'x“"&"g‘e % ¥o; O\Pp ol
r ™
-~ - ! B —In'j'i'ip-:-.L)X
= Y IR I
o s P
B -2(-1)" 1 n%s , R OE.:%
R.P. = 5 4 11122 )x
2 £ j=3, "B ¥, ( k7
0 1B nBk Py
k=1 nkl |HL ) nB\ 5 P e
s "0 - (32)
and in front, :
Yoji .
B o 1 Bep _ (Vo4 \ PPp
*0F+*F=§;J§=:l‘§l“o:|;6;%(— )e *
j
SRS ( lnj”i%)x
J=o (" _nB ] YuBj Ps
o= nj -1 'JD.B — D = &
o n 1n‘jpse Pr
R.F iv/——-egl) : 1 a S PYTR--
2 ; - x
aféli:io lfjil a8 5l —2E o e( =g
= -1+
nk ( -iznlcpg‘?) nB - -
L 2 - ‘”

¢Q6c ML VOVN
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Equations (32) and (33) comprise the final results for the ¢ part
of the potential ¢.

Now consider the @ part. The procedure is nearly the same, only

this time the discontinuity in axial veloecity will not be dealt with
separately because the PR part of Reissner's potential is a smooth

Fourler development in o - x which can be differentiated. The con-
tinuity conditions at the propeller plane x =0 Dbecome

[9r],0 * 8l = Pl (3)

E%l_ﬂ ’ E’;‘i:o } E—F]ﬁ (55)

in which Pgr 1s -the second term in equation (9). This term may be
written, in the x,p,o system, as

© n
(pR = R.P. ‘%Z:ii‘;—l)—hn(p)em(a"’{)(-i) (36)

n=1

or, alternatively,

_ BSOS —2(-1)” YrBj ) 1nB(a-x),
Pr = R.P. 5 HZ; 2 s hannB< o °)° (-1) (37)
where
ha(e) = 2 hannB(i'gﬂ ) (38)
= T

and hnj is real.
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he @p are obtained from equetion {27) with ¥ repiaced by @ and some new coeffi-
B
clents Bpy substituted for Anjy-

The ¢ part of the potential now becomes, with the Bpy determined from equations (34)
end (35) in a wanner similar to that for Apj,

g+ oy = mp. 25 B ) teBlently)

r yr B (-lnj+i———2)x
Jmo bay] | + 1 i Ton =B o e ]
A n IHJBE P
DY f SO YIS 2 e
2 £ 5= 2 . i(iznk'*p—g)x
k=l i1 + 5 JnB(E%%lE p e
- ~ (39)
- d 1 ) 1 +inB X
j=o = S (YuBs ) e(nf’ pg?
o k= n hnj 1 ,jB ) nB Pr ° &
-2(-1)" 1 o q inBa.
= R.P nB
k=1 1/-1 Jopl—— e) e
By ( + _11nk32> L_nB( | |
\ /] _
- (50)

Equations (39) and (40) added to equations (32) and (33) determine the velocity potential
for the propeller in sccordance with equations (15) and (16).

Q62 NI VOVN

Y
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PRANDTL, INDUCED VELOCITIES AT THE LIFTING LINE

The Prandtl induced velocities, in the sense used herein, are analo-
gous to those of the conventional 1ifting-line wing and propeller theo-
ries of Prandtl and Goldstein. More specifically, the Prandtl induced
velocities are those which must be presumed to be already present at
the position of the blades in order to assume that the airfoils retain
locally their same performance as in two-dimensional flow. With incom-
pressible flow, it was verified experimentally that the induction could
be determined with sufficient accuracy by assuming the wing or blade to
shrink into a 1ifting line and then applying the Bilot-Savart law over
the trailing vortices excluding the lifting line. This simplification
of the intrinsic general three-dimensional problem has long since
proved its worth. Therefore it is natural to seek extensions in
approaching the compressible problem. On the other band, it is dan-
gerous to rely on experience with incompressible flow for guldance in
supersonic matters. Since the present problem concerns a mixed subsonic
and supersonic flow, it will be expected that questions will arise which
will have to be settled by considerations of both subsonic and super-
sonic flow. Finally, for those who are more interested in the ‘general
three~-dimensional problem rather than an engineering concept, 1t is
remarked that the theory is still applicable to a lifting-surface
problem when those steps are omitted which specialize to the 1lifting
iine.

The induced velocities, or disturbance velocities, are given by
differentiations of ¢, but the algebraic sign is still open to a choilce
which is made so that a forward-thrusting propeller pushes the alr rear-
ward in the far wake. If the propeller is assumed to produce positive
thrust when I (p) is positive, then the velocities in the positive
directions of the coordinates must be

- - =21 (k1)
u- = = e e
which may be checked by means of the Reissner R term, which produces

the basic disturbance velocity in the far wake, as follows:

Since

VYR =B;(tp) (0'1 - ¢ ”‘1)
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gy is seen to be negative, but since the propeller rotates in the
negative a; direction, u“l is & veloclty in the same direction as

the rotation, as it should be; on the other hand, uzy is positive,
but since 2y 1s positive downstream, Uz is positive downstream,
also as 1t should be.

In propeller theory, it is customsry to consider an axial veloc-
ity ug and a tangential velocity wuyg, which are positive downstream
and in the direction of propeller rotation. Since uz; 1s positive
downstream, but Uy is positive agalnst the propeller rotation,
ug =z, end ut = -y, . Therefore, from equations (41) and (k&)

Px (k2)

ut=$%¢a (43)

determine the conventional axial and tangential velocities from the
velocity potential in the x,p,a system.

It is immaterial whether the differentiations in equations (42)
and (43) are applied to g or @y when the differentiation, which
is not straightforward, is made at the.lifting lines. Suppose ¢B is
used and consider first the ¢ part of ¢ (eq. (32)). For the vy

differentiation, the second term in equation (32) cancels one-half of
the first term. If it 1s permissible to differentiate the remaining

term, then at x =0 and a = %7 which means- the 1lifting line,
R _ 1%
S w)] -33E

x=0

=TI

a

B
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that is, the ¢ part of @y at the 1ifting line is one-half of the

far-wake value plus some effects from the hyperbolic part of the com-
.pressible field. The differentiation in the a direction is made with
regard for the Fourier development of the saw-tooth function which can
be recognized in equation (32) at x =0. For x =0 it is seen that
the .1 in the first brace gives a term

Jmo0 s ( )
Z ; —2(-1) l < \ (i)einBa'
- (_rg;_ )

but from equetion (17b) this term is just

and, therefore, the differentiation of this term cancels one-half of the
differentiation of the first term in equation (32). In other words, the
derivative of the above Fourier series with respect to a 1s to be
interpreted as the derivative of the sloping part of & saw-tooth func-
tion of o which the series actually represents, the differentiation
being performed off the teeth of the saw-tooth function. This cholce
‘of interpretation is justified by the fact that by so doing the theory
gives the correct results when degenerated to incompressible flow.

Since R.P.(éinB@) contributes nothing at o = %3 formal differen-
tiation of the rest of equation (32) gives

E{\PR**%B*“‘#BEI = %
x=0

B o
5 2

n=1 k=1 1B

l\)ll—-‘

%O: -2(-1)" 1 rnkJnB<yﬁBk p>(-l.)n (:B)°
. 2

P -1 2
ilnkps

(45)



Therefore, the ¥ part of ¢a‘ is also one-half of the far-wake value plus some effecte from
the byperbolic field.

Next equation (39) is differentiated. The differentiation of the real part along x, for

2 <= nB
=1
- , 3
=00 y'nB ~ A
ijc= [hnfl JnB(‘E—J P nB
B 6.2- TE "2(—1]]1 1 J T > , s}
=D IDIE = PRI (-1)" 2 >
n=l 3=J, (yan ) (nB)2
k=1 Tnpl ——= B + =il -
L J ~3103p2pg"
- P
(46)

[Riog+ o) =Lo®, B S % O RE RPN S I c: I B
BT g "2 % Eimim ® 2 T S|
o

g6S NI, VOVH

-
£

6T
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and, similarly,

3 _1 M
EQ@R + %ﬂm S5t
%
B
B < % —2(-1)" 1 VBl )(-1)n (B)% 8
a“nzﬂkq 1B 'ahnkJnB<oT 1 11,582 (48)

Equations (4%), (45), (47), and (48) give ¢, and @, at the

lifting line, but they must be expected to 1nclude some induction from
the 1lifting line itself. This part of the Induction must be discarded
in order to have the Prandtl induced veloclties at the lifting line.

It should be possible to recognize the induction of the 1lifting line
from an inspection of equations (44), (45), (47), and (48). In equa-
tions (4k4) and (45), the double summation has coefficients I'px which
depend directly on the circulation distribution I'(p) along the 1lifting
line; whereas hp; in equations (47) and (48) depend on hp(p) which
expresses the field produced by I'(p). Therefore, the hyperbolic terms
in equations (44) and (45) are now discarded as being caused by the
1lifting line itself.

Some further explanation of this step is perhaps desirable. It is
this operation which makes the lifting-line concept applicable
although the flow has partly supersonic character. The lifting line in
supersonic flow has infinite wave drag which shows up in the fact that
the velocities assoclated with the + part of the Reissner potential
are expressed by series which do not converge (egs. (i) and (45)).
Furthermore, if the theory is allowed to degenerate to the case of a
large number of blades at a large distance from the axis so that the
potential may be considered independent of radius, the representation
of an infinite staggered cascade in supersonic flow is obtained, the
properties of which are already known. Then the hyperbolic terms in
equations (44) and (45) are seen to represent just the self-induced
field of each cascade element by itself. On the other hand, it is the
self-induced field which must be taken out in order to obtain the
Prandtl induced velocities. Therefore the indicated rejection is in
accordance with the 1ifting-line concept.
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Substitution of equations (44) and (47) into equation (42) gives

o) kO n ! | 2
_ - B w ~2(-1)" 1 (Yan ) n (uB)
U, = - == ————=h — o) (-1)P -1y - ——1
I rafog?

(49)

and substitution of equations (45) and (48) into equation (43) gives

-3 kO n 1 n 2
-~ _- . Blo 2(-1)" 1 an)(-l) (uB) .
o e+ 2383 5 EA gy (YOS B ()

in which the bars denote the Prandtl induced velocity, the subscripts c¢
and 1 refer to compressible and incompressible, respectively, and the
terms in [, have been discarded.

DISCUSSION

The Bessel functions in equations (49) and (50) are those shown in
figure 2. It 1s shown subsequently that these functions are distributed
over the radius in such a way that the first inflection point of the
Bessel function in the kgth term falls on or very near the sonic radius.
For the lower k terms the first inflectlion point is progressively more
outboard of the sonlc cylinder so that at k =1 1t is near the tunnel
well with the first extreme (a maximum) of the Bessel function right at
the tummel wall. For k = 2, the second extreme (a minimum) is at the
tunnel wall, and so forth for the succeeding values of k as is seen
from lnspection of the arguments of the Bessel functions (see fig. 3).
Finally, at k = kp, which is the hyperbolic term with the largest k,
the maximum number of osclillations of the Bessel function occur and
these oscillations are all confined between the sonic cylinder and the
tunnel wall, because as was pointed out above, the first inflection
point of the koth Bessel function falls at or near the sonic cylinder.

The process of distributing the Bessel functions over the radius
influences the values of Ipx obtained from equation (13). This fact

brings up the significant point that ano can approach zero and thus

produce an effect similar to resonance 1n a vibrating system; each
narrow range of conditions for resonance is an extra degree reduced by
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the square-root operation in equation (13). An identically zero value
of 1lnky means that some additional considerations are required. How-

ever, when later the case of a propeller in free air is taken up, the
sumetions over j and k pass to radial Integrations in which the
difficulty of zero lnko appears as & square-root singularity which

causes no trouble and provides the first hint that a near-zero wvalue
for 1pkx 18 to be regarded as a necessary feature of the theory due
to a resonance property of the flow in a tunnel.

Generatlion of the coefficients hpi.- The coefficients hpy are

those in a Fourier-Bessel expansion of the Relssner far-wake radial
function hp(p). The functions hn(p) have the gppearance shown in
figure 3. The function hy(p) has a discontinuity in its first deriva-
tive because, when hp(p) 1s added to I', the resulting function must
be smooth in order to make equation (9) give a continuous flow at .

P = pg. Also sketched in figure 3 are the Bessel functions for given
values of nB used in the expansion of hp(p). These functions have

their extreme values on the tunnel wall pp eas is required by the

arguments ygBk p- Only the Bessel functions for the hyperbolic terms
T

in the velocity potentisl are shown, the ones appearing in equations (49)
and (50). The value k =1 corresponds to the Bessel functign with the
YnBk

first extreme value at p = pp because, from the argument p,

when p ranges from p =0 +to Prp it generates the Bessel function

up to the first extreme value. The kyth function is the one with first
inflection point and pg nearly coinciding. Thus, for the case repre-
sented, k takes on the values k=1 to k = kg =4 whlch correspond
to hyperbolic terms in the velocity potential. The terms with higher
numbers of extremes are not shown because they have elliptic flow
character, and they would merely produce more and more oscillatory por-
tions inboard of the sonic cylinder p = pg-

It has been stated that the first inflection point of the kgyth

Bessel function falls at or near the sonic radius. A more precise
statement, however, would be that the kpth Bessel function has its

argument equal to its order at or near the sonlic radius. However, the
inflection point has more meaning for visualization purposes. Further-
more, 1t can be shown that the argument at the first inflection point

is nearly equal to the order, if the order is not too small, with incon-
siderable error as may be seen from figure 2. Thls colncidence that
the kyth Bessel function tends to have an argument equal to the order
at or near the sonic radius will now be demonstrated end it is to be
inferred that this coincidence also applies to the first inflection
point. It will eppear that the coincidence of the argument with the
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order is exact if 1Ipg  =0. For a zero velue of Ink,, equation (12)
shows that

nB _ !
PT by ~ YmBlg
or,
2";;1‘9 bg = nB (51)

which states that the argument of the kgth Bessel function is equal to
the order nB at the sonic cylinder p =pg if lnko is exactly zero.

If 1lnk, 18 not exactly zero, then equation (51) is still nearly
true. Thus, from equation (12)

] y'
_EEE pg = ‘/(nB)2 + Pg2p2l (52)

which shows that since lhk 18 imaginary, corresponding to hyperbolic

terms, the argument of the Bessel function at the sonlc cylinder is less
than nB. The reverse would be true if the terms were elliptic so that
lpj would be real from equation (12). It appears then that, in fig-

ure 3, the kgth Bessel function has its argument equal to nB just
outboard of or at’ Pg, depending on whether ano 18 merely close to
zero or ldentically zero. Further, the hyperbolic terms with k lower
than kg bave their oscillatory portions more and more outboard of the
sonic cylinder p = Pg a8 k decreases from ko.

The sonic cylinder and tunnel-wall radius in relation to the first
appearance of hyperbolic solutions in the velocity potential.- The

hyperbolic solutions first enter the velocity potential when the sonic
cylinder comes inside the tunnel wall. If equation (13) is written in

the form
L _11mB \/(y_nlie)a i ﬂ)z
nk B P nB Pg
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then since the hyperbolic solutions have imaginsry 1,k the proof of
this statement is seen to coneist in showing that the smallest possible
1
value for ngg is unity, which is shown to occur when kg =1 and
nB—>w». This proof will place a lower 1imit on pp for the occurrence
of imaginary 1py; that is, pp must be greater than Py for imaginary
znk to occur. Therefore, the solutions cannot change type unless the
tunnel wall 1s outside the sonic cylinder. It is obvious that the

smallest value of yﬁgk must occur for k =1 Dbecause with this value

of k +the argument of the first extreme must be less than all succeeding
a?guments. It, therefore, remains to show that the smallest value for

¥
—%%L is unity, which follows from a formula on page 143 of reference 5
that holds when nB 1is large,

v, 3
glzl+°‘8°8618 .’n3+ .

— (53)

Hence

um TEBL (54)

which completes the proof.

Diagrammatic point of view of zero ano in relation to the

argument of the Bessel function.- Figure 4 gives a view looking down
the vertical exis In figure 2 showling the traces of the extremes of
JnB(y) on the nB,y plane. The slopes of these traces approach unity
as nB and y become large, a property of the Bessel function. For
a glven propeller operating condition, Pp and pg may be calculated;

by plotting in figure 4 the function %2 nB, it is possible to tell by
S

inspection of the figure how many hyperbolic solutions are present in

each k-wise summation, and the possibility of a zero value for ano

may be appreciated. From equation (51), the condition for zero Unk
is



NACA TN 2983 25

oo Pr
YiBky = o 1B (55)

If the line gg nB intersects one of the traces of the extremes on an

S
integral value of nB, then the corresponding lnko will be zero. TFor

example, if the dashed line through the origin in figure 4 represents

P -
?g-nB for a glven operating condition, then lnko for nB =8 and

k = ko = 2 would be zero.

The dashed line in figure 4 may also be taken as an indication of
what parts of the Bessel functions Jpp(y) are used for the elliptic
and what parts for the hyperbolic solutions at any given operating con-
dition. Equation (13) shows this separation because imeginary 1p)x are

given by equetion (13) so that the solutions are hyperbolic when

o2 Pp

(uB)? > (yﬁBk)a

or

mp 2L

> y!
nBk
Pg

which means that for hyperbolic solutions, the traces of the extremes

yﬁBk mist be below the dashed line gg-nB. Since the slopes of traces

of the extremes approach unity as nB-——»w, the first appearance of
hyperbolic solutions occurs when EE—= 1, because for this case the

Ps
line gg-nB also has slope unity (shown as the solid straight line

S
through the origin in fig. 4).

The suppression of resonant terms.- The discussion of the resonant
terms 1s based on the assumptlion that in the series expression for the
induced velocities, or the induced angle of attack at the blade, only
one zero of anb can occur within a finite number of terms in the
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series. In the author's opinion, this is true but a rigorous proof is
lacking. From a practical point of view, the series does not need to

be computed to a great number of terms, because the higher terms express
their contributions to the induced angle through oscillatory functions

of higher and higher frequency so that they eventually become unimportant
in a practical solution. Thus the question of how many resonant terms
must be dealt with can be answered for practical purposes by the fact
that in a series of a reasonable number of terms only one zero of lnko

can occur at a time so that there 1s just one resonant term.

Consider a propeller operating at conditions which make s particular
ano exactly zero. With this zero of lnkg is associated a resonant

term or mode in the serles expression for the induced angle of attack.
Now suppose the propeller to be twisted so that the angle of attack
with respect to the zero-lift angles of the alrfoll sections is equal
to the resonant mode multiplied by some finite constant factor. This
propeller, according to the theory, is subject to degenerate compressi-
bility effects, whlich can be seen without calculation as follows:

(1) Since infinite induced velocities are physically impossible,
it is seen from equations (49) and (50) that h must be zero; that
is, the 1lift distributiog of the propeller must bé such that hnko is

zero so that the ratio 7 = % appearing in those equations has a
nkg

finite wvalue.

(2) The only value for hnko/lnko which produces zero hnic, is

that which makes the resonant induced angle exactly cancel the blade
twist so that the 1ift is zero all along the blade.

Therefore the only solution compatible to both the compressible and
incompressible components of the Induction is that the 1ift remains
zero with the indeterminate ratio hnko/znko taking whatever value

is necessary to make the resonant mode exactly compensate the prescribed
angle of attack. It seems reasonable to expect a similar suppression of
the resonant mode when the angle-of-attack distribution is arbitrary.
Therefore, in compresslble fiow, the arbltrary prescription of 1ift
must always be made with the restriction that hnko for the resonant

mode be zero. The corresponding propeller geometry is seen to be
Indeterminate in that the geometric anglie of attack can be altered

in proportion to the induced angle of the resonant mode without changing
the prescribed 1ift distribution.

The other problem, in which the propeller geometry is given instead
of the 1ift distribution, is more realistic. Here, the 1ift distribu-
tion mist again yileld no resonant mode (hnko = 0) and is determined
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according to the requirement that the lifting properties of the blade
and the induced angles due to all the modes including the resonant mode
with finite hnko/znko must produce the 1ift distribution by which the

modes are determined. In practice this solution would be obtained by
an iteration process.

Assume a propeller of fixed geometry. The 1ift distribution, or
otherwise I'(p), is to be determined along the blade. If the resonant
term is assumed to be zero, such a distribution along with the distribu-
tion of induced velocities and induced angles can be determined. Sup-
pose, however, that a resonant term occurs in the induced velocities
and, correspondingly, in the induced angles. The induced angles are
then Infinitely sensitive to small changes in the 1ift distribution and
some special considerations are necessary.

The 11ft distribution with the resonant term assumed to be zero
will in general produce some value of the resonant coefficient (hnké)r'

To prevent the introduction of infinite induced angles and thus to make
the 1ift distribution consistent with the induced-angle distribution,
the 1ift distribution must be so modified as to result in zero values
of hnko so that hnko/lnko will be finite.

h.
Suppose that iEEQ = 1, and compute the corresponding change of
nkg
induced angle Aai(p) and the accompanying change in circulation dis-
tribution AI(p). From Al(p) compute Ahpy, from equations 10(a)
and 10(b), and an equation similar to (19). Now because hp(p) « r(p)
and ATl(p) « Aoy (p), take C so that

c Ahnko = -(hnko>r (56)
and adjust the induced angles and the clrculation by adding C Aui(p)
h
and C Al(p), respectively. This is equivalent to taking {EEQ =C
nko

Where hnko = lnko = 0. The process is inexact, of course, because of

the effect of the added AI'(p) on the induced velocities, and succes-
sive approximations are therefore required.

The above iteration process may be performed mentally on the
hypothetical propeller defined at the beglinning of this section in
which the propeller was twisted with an angle of attack with respect
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to the zero-1lift angle of the airfoil sections equel to the induced angle
of attack of the resonant mode multiplied by a constant factor. It will
be seen that the process gives the correct result, which is zero 1lift
over the whole blade. The validlty of the iteration process is thus con-
firmed to the extent that the abovementioned hypothetical propeller
actuslly does produce no 1ift. The latter question appears to require
experimental verification. This requlrement is not surprising when it is
recalled that the Prandtl lifting-line wing theory, in which lifting
lines were to be replaceable by finite chords of the same circulation,
could not be rigorously justified and had to await experimental
verification.

VELOCITY POTENTIAT, IN FREE AIR

The velocity potential in free air has a form different from that
where a tunnel 1s present; the difference is analogous to the change
of a Fourler serles into an integral when the interval of expansion
becomes Iinfinltely great. As far as the lnduced velocitles are con-
cerned, it is believed that they will be not much different from those
wlith the tunnel present. Therefore, the free-air potential will not
be derived in detail.

From Hankel's integral (see eq. (3) on p. 453 of ref. 6)
Fn(R) =fm 4 d7fan(s)JnB(7s)JnB(7R)s ds (57)
0 0
the functlon PR in the Reissner potential as Pp—>© can be represented

by

2]

9g = R.P. %;%}:&f: rea(1Tap(r0)e ) L yay  (58)

vwhere Fp(R) becomes h,(p) by comparison with equation (36) and the
function f£,(7) 1is glven by

£aly) = j; ()35 (75 )ds (59)
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The function hn(p) used here must sult the boundary conditions of the
far wake, obtained from equations (10) by letting pp—>=.

By analogy with equation (11) and by using a form of equation (57),

choose
2
Eéléﬁa_ leg_ﬁui% .
1riBa, s Ps
e d_7

(60)

op - &> 2L [ o ()rea(nnatrede
B

which is a solution of equation (5) if differentiation under the integral
18 permissible. The physical conditions may now be imposed by methods
similar to those in the case where a tunnel was present. It will be found

2
that the functions’ Cp(y) contain the radical {2 - @%- in the
p

denominator, and this radical is the counterpart of 1,5 (see eg. (13)).

Therefore, the summation over J <for the tunnel case passes to an Inte-
gration over 7 where the possible infinity caused by 1nj in the

denominator becomes in free air a square-root singularity in the inte-
gration, which should cause no difficulty.

NUMERICAL EXAMPLE

A two-blade propeller 1s assumed to operate at an advance Mach
number M of 0.8193, with p at the tip equal to unity;-therefore,
the advance ratio V/nD is x, and the circulation distribution is

r*(p) = % oI - p? (61)

vhere '

r* = Bop (62)
V2
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is a nondimensional form for I’ and V/nD 1is the conventional parameter
in which nD 1s the angular velocity in revolutions per unit time multi-
plied by propeller diameter D. The circulation r* is plotted in fig-
ure 5, from equation (61), along with the corresponding induced quan-
tities Uay/V, Ut;/V, and ai;, where aj; 1is the induced angle of
attack for incompressible flow expressed in radians. No particular
significance is to be attached to the factor 1/6 in equation (61) or

to the precise choice M = 0.8193.

If equations (49) and (50) are written as

Ug; + Aug (63)

vae

I

Up, + Aug (64)

ﬁfc

where A, and Aug are the changes due to compressibility, then

[=4] - _ n ] 2
Z % —2‘(—2— ']2; hnlg:rrﬂ?.(zlgE D) (-l)n -ilpk - ——(91)?'—2
n=1 k=1 1B T -1k Pg

<|E

B
A'lla:-?a—('

(65)

_Blo < -2(-1)" Bk ) (-1)2 (uB)®
My, = % 5 % > % — % hnkJnB(ypT p) 1 1,88 (66)

If by, based on I'* instead of T, is defined as

*

hpyx = — hpk (67)

SIE
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the compressibility effects in ratio to the incompressible can be
determined from equations (65) and (66) as follows:

Mog/V 1 1 & 0
- = 68
T T 2 g (©?

A }°°: ?: ey (69)

Tty /V hap Wy V51 S

where

v! 2
ank(p) = 2 :rnB(;ik ) Aty - B (70)
T -113pg
Yy (nB)?
to(p) = 2 b (ano> (1)
nk nB nB pT —ilnkﬂz T

*

The coefficients hpi -and -1l1,)x are tabulated in tables T and IT
for the first six terms in the n-wise summation. These coefficients,
with the very complete tabulation of the Bessel functions in reference 7,

are used to calculate api(p) and tok(p) which are tabulated in
tables III and IV.

The ratios — a/V and ‘ﬁfﬂzz
o, /Y Ty /V
effects in ratio to the veloclities in incompressible flow are plotted

against p 1n figure 6. The compressibility effect is seen to be very
small, less than 4 percent.

which express the compressibility
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Before discussing the induced angle of attack, some explanation of
the velocity diagrams in figure T may be desirable. Figure 7(a) shows
the conventional velocity diagram of incompressible-flow propeller
theory. Figure 7(b) shows the compressibility effects superposed on
the incompressible. Since only the part of the diagram showing the
induced velocities 1s important, an enlargement of this part is showmn
in figure 7(ec). The lines A-A, B-B, and C-C which are the sides of
the induced angles may ell be drawn parallel to the local helical
direction in a small-disturbance flow.

If Aoy 1s the change in induced angle of attack accompanying Aug
and Aug, then from figure T

P Dug Luy,

o = Eve A+ e? Eua E{l (72)
1+ p°© v
VvVl + p2

which, by using equations (68) and (69), can be put in the form

——=———Z§ko:am(o) (73)

aiy  hwooly £9 =T

Where

ank(p) =

5 ()] (7h)

Values of ap(p) are tabulated in table V. The ratio Aui/aii plotted

in figure 6 is seen to be very small; this fact indicates that the induced
efficlency is reduced only 1 or 2 percent by compressibility, to the
accuracy provided by six terms in the summation over n.

In figure 8, partial sums of apyk(p) are plotted so that the con-
tribution of succeeding terms can be seen. There is a shift in the
convergence with the addition of the fifth term. This shift is caused
by an unusually large hnk at n=5, ky=3.
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It should be noted that, although the induced angle has been calcu-
lated for a prescribed circulation distribution, nothing is sald about
the shape of the propeller required to give this circulation distribu-
tion. At sbme n, there may be an 1Ipx sufficiently close to zero so

that a strongly oscillatory induced-angle distribution is finally
indicated and an unusual blade-angle distribution would result. Appar-
ently, a degree of arbitrariness is lost in giving arbitrary circulation
distributions if they are to be related to reasonably shaped propellers.
More realistic is the view that the propeller shape is prescribed and
then the performance is calculated. This approach would mean in the
present example that, after the calculation of the induced angle, its
effect on the initial circulation distribution would be calculated,
after which the new distribution would be used for a new induced-angle
calculation. In the process, the resonant mode would be suppressed,

and a reasonable induced-angle distribution and a circulation distribu-
tion somewhat different from that of the prescribed propeller in an
incompressible flow would result.

CONCLUDING REMARKS

The velocity potential for a lifting-line propeller with subsonic
advance velocity but unrestricted tip speed has been derived in cylin-
drical harmonics. The theory is for a linear equation of motion and must
be restricted to advance Mach numbers not too close to one.

From the velocity potential, the induction at the blade has been
obtained with a view to preserving a strict analogy to the induced-
angle-of-attack concept embodied in Prandtl's lifting-line wing theory
which has been carried over to propellers by Goldstein and Reissner.

The Prandtl inducéd angle of attack becomes representable by the
basic incompressible results plus some compressibility effects expressed
in infinite series. Among the terms in the series there is always at
least one which becomes magnified with indefinite greatness in compari-
son with the others, an effect resembling resonance in vibration theory.

A numerical example is provided in which a limited number of terms
in the series expression for the induced angle of attack have been
calculated for a propeller with a reasonable 1ift distribution. The
compressibility effect appears to be negligibly small, but it must be
noted that there was no resonant term among the terms calculated. It
is remarked that the arbitrary prescription of the 1lift distribution
cannot be made if resonance is to be considered.

Although the present calculation indicates that the nonresonant
terms in the wvelocity potential produce only a small compressibility
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effect on the induction at the blade, it is not certain that the resonant
term, or near-resonant terms, would not make a significant contribution.
In other words, if an example were chosen for calculation in which the
propeller geometry were prescribed instead of the 1lift distribution, and
1f the operating conditions of the propeller were chosen to make a certain
convenient term resonant, then, after completing a somewhat laborious
iteration process, a significant compressibility effect might be observed
as a result of the direct consideration of the relation of resonance to

a realistic physical problem. It is the author's opinion that the calcu-
lation could probably be made with sufficient accuracy by considering
only the induction of the Relssner potential and the resonant term with
the nonresonant terms neglected. One might be led further to expect

such a calculation to explain the experimentally observed dips in the
1ift distributions of propellers operating at tip speeds above a Mach
number of 1.00; unfortunately, the explanation would not be completely
clear, however, because there is always the uncertain effect of compressi-
bility on the alrfoil properties in the transonic range which is proba-
bly a considerable cause of the dips in the 1ift distribution.

With regard to experimental verifications there 1s one check which
would seem to be satisfactorily definite. It consists in testing a
propeller in & circular wind tunnel at an operating condition producing
an exact resonance for a particular term or mode in the series expres-
sion for the induced angle of attack. If the blade-angle distribution
for the blade is so designed that the airfolls have, with respect to
zero 1ift, an angle-of-attack distribution the same as (or differing
only by a constant factor from) the induced angle of attack of the
resonant mode, then, according to the theory, the propeller could
support no load. The propeller would need to be constructed with some
accuracy in the blade-angle distribution but the other design particu-
lars would be arbitrary. In particular, the airfoils might just as
well be symmetric.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 7, 1953.
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TABLE I.- COEFFICIENTS by
n
1 2 3 4 5 6
k
1 0.010442 | 0.008512 | 0.005T7k | 0.003776 | 0.002412 | 0.001485
2 -.000%00 | .003183| .00338L{ .003089
3 -.005847 { -.00083%0
TABLE II.- TABULATION OF -il,
1 2 3 4 5 6
k
i 3 4966 | 7.8164 | 12.1428 | 16.4777 | 20.8245 | 25.1683
2 6.1113 | 11.4201 | 15.9732 | 20.4635
3 8.2499 | 14.1980

W
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TABLE ITT.- ESSENTIAL PART OF THE INDUCED-AXTAL-VELOCITY CALCUIATION ank(p)

37

n
1 2 3 S 5 6
K K
p=0.3
1 -0.001702 -0.000066 000003 | mmmemmmme | e | e
2 000009 -0.000006
3 0.000017 —————
E: -.001702 -.000066 000006 - .000006 L000017 | meeemeeee
=L
p=0.4
1 -0.0029%9 -0.000138 000014 -0.000001
2 0000k 3 ~.000049 ~0.000007 -0.000001
3 .000222 00000k
2 -.002949 -.000198 000029 - .000050 000215 000003
1
p =05
1 -0.004468 ~0.000457 000051 -0.000006 -0.000001. ————
2 .00013% -.000229 -.000051 ~0.000010
3 .001384% 000037
k.
> -.00h468 ~.000457 000083 -.00025% .001332 000027
k=l
p=0.6
1 -0.006192 -0.000881 .000138 ~0.000023 ~0.00000% ~0.000001
2 000308 -.000735 -.000226 -.000062
3 .005122 000164
g -.006192 -.000@81 .0001T70 7.000758 004892 .000131
p = 0.7
1 -0.008036 -0.001499 000307 -0.000066 ~0.000014 -0.000003
2 .000560 -.001756 -.000711 -.000257
3 . .012522 000630
% -.008036 -.001499 000253 -.001822 011797 000370
k=1
pno0.8
1 -0.00934k4 -0.002311. 000593 ~0.000160 ~0.00004% ~0.000012
2 -000838 -.003296 -.001670 -.000756
3 .020977 .001352
g; -.009944 -.002311. .00024% -.003456 .019263 000584
p=0.9
1 -0.011811 -0.003298 001017 -0.000330 -0.000109 ~0.000036
2 001040 - .004963 ~.003040 -.001662
3 023273 .001907
g -.011811 -.003298 .000023 -.005293 .02012% 000209
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TARLE IV.- ESSENTIAL PART OF THE INDUCED-TANGERTTAL-VELOCITY CALCULATTON tnk(p)

NACA TN 2983

n
1 2 3 5 5 [3
k
p=0.3
1 0.001643 0.00008%4 0.00000k
2 ~.000005 0.00000%
3 ~0.000009 O
2; 001643 000084 -.000001 000004 -.000009 e
p =0k
1 0.002846 0.000252 0.000021 0.000002
2 ~.000026 000035 0.000006 0.00000L
3 -.000122 ~.000002
% 002846 000252 - .000005 000037 -.000116 ~.000001
p = 0.5
1 0.00%312 0.000581 0.000074 0.000009 0.00000L ———
2 ~.000079 000167 000042 0.000009
3 -.00076L -.000024
g .004312 .000%8L ~.000005 000176 -.000718 ~.000015
p = 0.6
1 0.005976 0.001121 0.000198 0.000035 0.000006 0.00000L
2 -.000181L 000535 .000188 000057
3 -.002818 ~.000123
2; 005976 001121, ¢ 000017 000570 -.00262% ~.000065
p=0.7
1 0.007756 0.001909 0.000%42 0.000102 0.000023 0.000003
2 -.000330 .001280 .000591 000237
3 -.006889 ~.000398
2 007736 +001909 000112 .001382 -.006275 -.000156
1
p=0.8
1 0.009558 0.0029%2 0.000853 0.000247 0.00007L 0.000020
2 ~.000%93 .002403 .001389 000697
H -.011541 -.000855
g .009598 .0029%2 .000360 002650 -.010081 -.00138
p =0.9
1 0.011k00 0.004158 0.001464 0.000511 0.0001T7 0.000060
2 ’ -.000612 003618 002529 001532
3 -.01280k -.001206
% 011400 .00%198 000852 004129 -.010098 000366
To=
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TAKLE V.- ESSEWTIAL PART OF THE INDUCED-ARGLE-OF-ATTACK CALCULATION any(e)

1 2 3 5 5 6
\
p =03
1 0.008557 0.000239 0.000012 ———
2 -.000012 0.000009
3 ~0.000021 ———
2; 00455T 000239 1] 000009 -.000021 —_——
¥ oovs57 0wt - coreos ot | oo
D,
p =04
1 0.005116 0.0005Th 0.0000%1 0.00000%
2 ~.0000%), 000058 000011 0.000002
3 -.000185 - 000002
2; 005116 000k Th 1] 000062 -.00017% <]
ﬁ; 2; o05116 005550 005550 osése 0078 o578
ns
p = 0.5
1 0.005112 0.000THT 0.000098 0.000011 0.000002
2 -.000072 000176 000046 0.000010
3 ~.00066% -.00002%
g .005112 000THT 000026 000187 -.000616 -.00002%
i; g 005112 005859 005883 008072 005456 .0054h2
Do
p o 0.6
1 0.004592 0.000385 0.000161 0.000033 0.000006 0.000001
2 -.000086 000331 000131 .0000%3
3 -.001195% -.000065
g 004592 000995 000055 000354 -.001057 -.00002L
o=,
p 0.7
1 0.003661 0.001125 0.000280 0.000067 0.000015 0.00000%
2 -.00005% 000403 000233 000106
3 -.000722 -.000085
g 003661 001126 000225 .0004TO -.0004TH 000025
S; 2; 003651 004787 005013 003483 005009 005054
o=,
p=0.8
1 0.00465 0.001115 0.000361 0.000111 0.000033 0.000014
2 000033 -00022% .00024% 000162
3 001436 000008
g .0ozh6s 001115 00039% 000335 001713 000164
ﬁ; 2 00465 003580 L00%9Th 00R 309 006022 006206
D=,
p = 0.9
1 0.001125 0.000957 0.000393 ©0.000L 0.000055 0.000019
e .0001hL -.ooogg 000051 0001 2%
3 003712 000208
2; .00112% 000937 000534 -.000097 003808 000341
n=.
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Figure l.- Orientation of cylindrical coordinate system.
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Figure 3.- Schematic representation of the Bessel functions JﬁB(y) in
relation to the functions I'(p) and h,(p).
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Figure 6.~ Compressible induction at the blade.
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Figure 7.- Induced velocities at the blade.
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Figure 8.~ Pertiel sums of @p(p), the essentiml quantity in the induced-
angle-of-attack calculatlon.
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